School of Engineering and Technology, (SET)

The rationale behind this course is to provide an understanding of classical control theory, digital control theory, state-space control theory, optimal control theory, and also to make the student familiar with the computer aided analysis tool, MATLAB, for control system analysis.

Overview of Classical Control Theory; Digital Control Theory; State-Space Control Theory; Optimal Control Theory.

None

I.            Overview of Classical Control Theory
1.      System Modeling
2.      Transfer Function
3.      Stability
4.      Transient and Steady-State Responses
5.      Frequency Response
6.      Graphical Methods
7.      PID Control
8.      Lead-Log Control
9.      System Identification
 
II.         Digital Control Theory
1.      Sampling
2.      Discrete-Time Modeling
3.      Zero-Order Hold Circuit
4.      Pulse Transfer Function
5.      Response Analysis
6.      Position and Velocity Algorithms
7.      Direct Design of Digital Control Algorithm
III.       State-Space Control Theory
1.      State-Space Modeling
2.      State-Space Representation
3.      Transfer Function
4.      Stability
5.      Controllability and Observability
6.      Regulator Design
7.      Observer Design
8.      Compensator Design by the Separation Principle
 
IV.      Optimal Control Theory
1.      Linear Quadratic Regulator
2.      Random Processes
3.      Kalman Filters: Optimal Observers
4.      Linear Quadratic Gaussian Control: The Separation Theorem

Introduction to MATLAB; Classical Control Analysis; Programming in MATLAB; Simulink; State-Space Analysis; State-Space Design; Random Processes; Optimal Control.

Lecture Notes

V.N. Afanasev, V.B. Kolmanovskii, and V.R. Nosov: Mathematical Theory of Control Systems Design, Kluwer Academic, 1996.
W.L. Brogan: Modern Control Theory, Prentice Hall International Edition, 1991.
J.J. D'Azzo, and C.H. Houpis: Linear Control System Analysis and Design, Conventional and Modern, 1995.
R.C. Dorf: Time-Domain Analysis and Design of Control Systems, Addison-Wesley, 1995.
B. Friedland: Control System Design, An Introduction to State-Space Methods, McGraw Hill, 1987.
W.J. Palm, III: Control Systems Engineering, Wiley, 1986.
B. Shahian, and M. Hassul: Control System Design Using MATLAB, Prentice Hall International Edition, 1993.
S.M. Shinners: Modern Control System Theory and Application, Addison-Wesley, 1972.
R.J. Vaccaro: Digital Control, A State-Space Approach, McGraw-Hill, 1995.
W.A. Wolovich: Automatic Control Systems, Basic Analysis and Design, Harcourt Brace College, 1994.

IEEE/ASME Transactions on Mechatronics
IEEE Transactions on Robotics and Automation
Mechatronics

The Final Grade will be computed according to the following weight distribution:

Midsem Exam 40%
Final Exam 40%
Lab Assignments 20%.

Open book examinations are usually given both in the midsem and final.

SECTION NAME